Kimya Dersi – KİMYASAL BAĞLAR,Atomları Bir Arada Tutan Kuvvet

KİMYASAL BAĞLAR
Birleşiğin en küçük parçasın oluşturan ve en az iki atomun birleşmesinden meydana gelen kararlı yapı moleküldür. Moleküldeki atomları bir arada tutan kuvvet ise kimyasal bağlardır.
Atomları Bir Arada Tutan Kuvvet
Atomun en ilginç karakteristik özelliği, bileşik oluşturmak için öteki atomlarla bağ yapma ve birleşme özelliğidir. Dalton: bileşik atomların birleşmesi sonucu oluştukları keşfetmiş, ancak atomların birbirine nasıl bağlandıklarını açıklayamamıştır. Günümüzde elementlerin aynı tür atomlardan, bileşiklerin ise farklı tür atomlardan oluştuklarını ve bileşiklerin, kendini oluşturduğu elementlerden farklı özellikle gösterdiklerini biliyoruz.
Örneğin; sodyum ve klor atomlarından oluşan yemek tuzunun özellikleri, onu oluşturan sodyum ve klor elementinin özelliklerinden oldukça farklıdır. Ayrıca yemek tuzunun özellikleri; karbon, hidrojen ve oksijen elementlerinden oluşan çay şekerinin özelliklerinden de farklılık gösterir. Ancak yemek tuzu ile çay şekeri katı ve kristal yapılı olmak gibi kısmet benzer olan özellikleri de gösterebilir. Her iki bileşiğin temelde farklı olan kristal yapılarında atomlar çok düzeli bir şekilde birbirine bağlanarak kristal örgü içerisinde belirli bir konum alır. Bu maddeler, dışarıdan bir etki yapmadığı sürece seçim ve hacimlerini korur. Bu durum, her iki maddenin örgü yapısında atomların belli konumda kalıyor olmasından kaynaklanır. Eğer bu iki madde ayrı ayrı ısıtılırsa, çay şekeri düşük sıcaklıkta erir ve geride karbon bırakarak bozulur. Yemek tuzu ise yüksek sıcaklıkta (801oC’ta) eriyerek sıvı hale geçer.

Dışarıdan verilen ısı enerjisiyle, bir zorlama sonucu, bu katılardaki düzenli örgü yapısının bozulması, atomları belirli bir örgü düzeninde bir arada tutan atomlar arası kuvvetlerin varlığını gösterir. Hatta, her iki maddede örgü yapısının farklı sıcaklıklarda bozulması, farklı katı maddelerdeki atomlar arası çekim kuvvetlerinin büyüklüklerinin de farklı olduğu açıklar. Bir başka ifade ile çay şekerinin kristal yapısına neden olan atomlar arası etkileşmeler, yemek tuzundakine göre daha zayıftır.
Yukarıda belirttiğimiz gibi yemek tuzu, iki farklı elementten, çay şekeri üç farklı elementten oluşur. Ancak her iki maddede örgü düzenlerini sağlayan kuvvetler, yani atomlar arası etkileşme kuvvetleri çok farklıdır.
Bununla beraber farklı tür ve sayıda atom, aralarında farklı kuvvetlerdeki etkileşimlerle birbirine sıkı biçimde bağlanarak belirli kümeler oluşturur.
Aynı ya da farklı cinsten atomların kuvvetli etkileşimlere kümeler halinde bir arada tutulmalarını sağlayan kuvvetlere kimyasal bağ denir.
Yüksek sıcaklıkta hidrojene atom halinde rastlanır. Ancak normal şartlarda hidrojen gazı, H2 formülü ile gösterilen iki atomlu kümler halindedir. Bunun nedeni, yüksek enerjili ve kararsız olan hidrojen atomlarının daha az enerji ve kararlı olan H2 kümeleri haline geçme eğilimidir. Bu eğilimin sonucu olarak, hidrojen atomları aralarında bağ yaparak H2 kümelerini oluşturur ve dışarıya bir miktar enerji verir.böylece hidrojen atomları daha az enerji ve kararlı hale geçer.
H(g) + H(g) à H2(g) + 432,6 kJ
Atomlar bağ yaparken açığa çıkan enerji, bu bağları kopararak molekülü atomlarına ayırmak için verilmesi gereken enerjiye eşittir. Bu enerjiye kimyasal bağ enerjisi denir.
Bir molekülde bağ enerjilerinin toplamının büyüklüğü, molekülün kararlılığının bir ölçüsüdür.
Kimyasal bağlarla bir arada duran bir atomlar kümesinin fiziksel ve kimyasal özellikleri, onu oluşturan her tür atomunkinden çok farklıdır. Kaldı ki bu özellikler o kümeye has ayırt edici özelliklerdir. Örneğin: canlılığın bir parçası olan su bileşiği, iki hidrojen ve bir oksijen atomunun bir araya gelmesinden oluşur. Hidrojen renksiz, kokusuz ve yanıcı bir gazdır. Oksijen ise yine renksiz, kokusuz ve yakıcı bir gazdır. İki hidrojen ve bir oksijen atomunun bir araya gelerek kuvvetli etkileşimlerle oluşturduğu su kümesi, oda sıcaklığında sıvı bir maddedir. Yanıcı yada yakıcı bir gazdır. Normal koşullarda su : 0oC’ ta donan, 100oC ta kaynayan bir maddedir. Bu özellikler suyun ayırt edici özellikleridir.
Asal gaz atomlarının değerlik orbitalleri, tamamen elektronlarla dolu ve değerlik elektronları çekirdeğe eşit uzaklıktadır. Bu durumda , asal gaz atomları küresel simetrik olup iyonlaşma enerjileri oldukça yüksektir. Bu yüzden asal gaz atomlarından elektron koparmak zordur. Ayrıca asal gaz atomlarının değerlik orbitalleri dolu olduğundan dışarıdan elektron alamaz. Bu durum, asal gaz atomlarına en az enerjili ve kararlı yapı sağlar. Diğer elemen atomları ise aralarında elektron alış verişi yaparak ya da elektron ortaklığı kuran elektron dizilişlerini asal gazların elektron dizilişine benzetir. Böylece bu atomlar daha az enerjili, daha kararlı, nötr kümler haline gelir. Atomların elektron alış verişi ya da elektron ortaklığı yoluyla elektron dizilişlerini 1s2 elektron dağılımlı He asal gazı elektron dizilişine benzetmelerine dublete varma denir. Elektron dizilişlerini ns2 ns6 (n, herhangi bir enerji düzeyi numarasıdır.) elektron dizilişli Ne, Ar gibi asal gazların elektron dizilişlerine benzetmelerine ise oktete varma denir.
Atomların oktetlerini tamamlamaları için iki temel yol geçerlidir. Birinci yol, elektron kazanma veya kaybetme, ikinci yol ise elektronlarını paylaşmaktır. Atomlar, asal gaz yapısına ulaşmak için iki yoldan birini seçer. Bu farklı seçim sonucu atomlar iyonik ya da kovalent bağ yaparak kararlı yapı oluşturur. Kimyasal bağ oluşumunun gerçekleşmesinde iki temel faktör söz konusudur.
1. Atomların asal gaz yapısına ulaşabilme çabaları,
2. Karşıt yüklerin birbirlerini çekmesi.
Elektron – Nokta Yapısı (Lewis Yapısı)
Levis simgesi, iç orbital elektronları ve çekirdeği gösteren bir simge ile değerlik elektronlarını gösteren noktalardan oluşur. Amerikalı bilim adamı, G.N. Lewis’in ( Levis ) adı verilen bu simgelerde her elektron bir nokta ile belirtildiğinden elektron – nokta simgeleri olarak da bilinir. Bir elementin elektron – nokta yapısı elementin sembolü etrafına değerlik elektronu kadar nokta koyarak yazılır. Aşağıda ikinci sıra elementlerinin elektron nokta yapıları tablo 1’da gösterilmiştir.
TABLO 1 :İkinci Sıra Elementlerin Elektron – Nokta Yapısı (Lewis Simgeleri)
1. İyonik Bağ
Periyodik cetvelin sonunda bulunan metaller ile periyodik cetvelin sağında bulunan ametaller bir araya geldiklerinde, aralarında elektron aktarımı olur. Çünkü metallerin iyonlaşma enerji düşük olduğundan, en dış kabuklarında bulunan değerlik elektronları kolaylıkla verir. Böylece elektron dizilişleri soy gazların elektron dizilişlerine benzer. Bu arada pozitif yüklü iyonlar (katyonlar) oluşur. Her bir metalin oluşturduğu iyonun yükü, verebileceği değerlik elektronu sayı ile sınırlıdır (tablo 2). Örneğin periyodik cetvelde 1a grubunda yer alan soydun metalinin değerlik elektron sayısı bir, bileşiklerde iyon yükü +1’dir.
TABLO 2 :IA,IIA ve IIIA Grubu Elementlerin Değerlik Elektronları ve İyon Yükleri
Grubu
En dış kabuktaki degerlik elektronlarının dizilişi
Değerlik elektron sayısı
Verebileceği elektron sayısı
İyon yükü
İyon örneği
IA
ns1
1
1
+1
Na+
IIA
ns2
2
2
+2
Ca+2
IIIA
ns2np1
3
3
+3
Al+3
Diğer yandan, elektron ilgisi yüksek olan ametaller, atomların en dış kabuklarına elektron alarak elektron dizilişlerini soy gazlara benzetir. Bu arada negatif yüklü iyonlar (anyonlar) oluşur. Her bir ametalin oluşturabileceği iyon yükü, değerlik orbitallerindeki eksi elektronlar yerine alabileceğin elektron sayısı kadardır (tablo 3). Örneğin; periyodik cetvelin 2. periyot VIA grubunda yer alan oksijen atomunun değerlik elektron sayısı 6’dır. Değerlik orbitallerde bulunması gereken elektron sayısı 8’dir. Oksijen atomu oktetini sağlamak üzere dışarıdan 2 elektron almalı -2 yüklü iyon oluşturmalıdır. Sıkça karşılaştığımız anyonların bazıları ; flüorür (F-), klorür (C-), sülfür (O-2) ve nitrür (N-3) dür.
TABLO 3 :VA; VIA ve VIIA Grubu Elementlerin Değerlik Elektronları ve İyon Yükleri
Grubu
En dış kabuktaki degerlik elektronlarının dizilişi
Değerlik elektron sayısı
Verebileceği elektron sayısı
İyon yükü
İyon örneği
VA
ns2np3
5
3
-3
N-3
VIA
ns2np4
6
2
-2
O-2
VIIIA
ns2np5
7
1
-1
Cl-
Bir atomdan elektron kopartılabilmesi, belirli bir enerjinin (iyonlaşma enerjisinin) elektron koparılacak atom tarafından alınmasını gerektirir. Gerekli iyonlaşma enerjisinin sağlanabileceği durumlarda, bir atomdan elektronlar kopartılarak diğer atomun orbitallerine aktarılabilir. Elektron kaybeden atom pozitif iyon (katyon), elektron alan atom negatif iyon (anyon ) haline geçer. İyonik bağ, zıt yüklü bu iyonlar arasındaki elektrostatik çekme kuvveti sonucu oluşur.
Katyon ve anyonlar arasındaki elektrostatik çekim kuvvetiyle açıklanabilen kimyasal bağlara iyonik bağ denir. Bu tür bağları içeren bileşiklere ise iyonik yapılı bileşikler denir.
Metal ve ametal atomları arasında oluşan iyonik yapılı bileşiklerden bazıları; kalsiyum oksit (CaO), magnezyum klorür (MgCl2), sodyum nitrür (Na3N), potasyum sülfür (K2S)dür.
NaCl bileşiğinde iyonik bağ oluşumu :
11Na elektron dizilişi : 1s2 2s2 2p6 3s1
17Cl elektron dizilişi : 1s2 2s2 2p6 3s2 3p5 şeklindedir.
Na elementinin iyonlaşma enerjisi ve elektron ilgisi küçüktür. 3s orbitalindeki bir tane değerlik elektronunu kolaylıkla vererek elektron dizilişini, 1s2 2p2 2p6 şeklinde 10Ne asal gaz elektron dizilişine benzeterek oktete varır. Na+ haline gelir.
Na (1s22s22p63s1) à Na+(1s22s22p6) +e-
İyonlaşma enerjisi ve elektron ilgisi büyük olan Cl is Na atomundan ayrılan bir elektronu alarak elektron dizilişini 1s22s22p63s23p6 şekline sokar. Cl- iyonu haline gelerek 18Ar asal gazının elektron dizilişine (oktete) ulaşır.
Cl (1s22s22p63s23p5) +e-à Cl-(1s22s22p63s23p6)
Farklı yüklere sahip Na+ ve Cl- iyonları Coulomb (Kulon) kanunu gereği birbirini elektrostatik çekim kuvvetleriyle çekerek iyonik bağ oluşturur. Bu iyonlar dışarıya enerji vererek iyonik NaCl bileşiğini meydana getirir.
NaCl’ün Lewis yapısı aşağıdaki gibidir.
İyonik bağlı bileşiklerde, her anyon ve katyon, çevresindeki zıt yüklü anyon ya da katyonu elektrostatik çekim kuvvetleriyle çeker. Bu şekilde uzayın her doğrultusunda iyonlar arasındaki enerjinin en az olacağı bir sıralama ile çok sayıda iyonun bir arada bulunduğu örgü yapısı oluşur. İyonların bu üzgün örgü yapısı oluşur. İyonların bu düzgün örgü yapısına iyonik kristal denir.
İyonik bileşikler normal şartlarda katı hâlde bulunur. Katı hâldeki iyonik bileşiklerde çok sayıda anyon ve kalyonun düzenli bir biçimde kristal içinde yer alır. Katılarda kristal örgü yapısı nedeniyle bileşik formülü, mad­dedeki farklı atomların oranlarını yansıtan en basit bir birimdir. Bu birime bileşik formülü denir.
Buna göre sodyum klorür için kullandığımız NaCl formülü bu maddenin en basit formülüdür. Bu formül sodyum klorür bileşiğinde, sodyum iyonlarının sayısının klorür iyonlarının sayısına eşit olduğunu gösterir.
İyonik bir bileşik olan magnezyum klorürün formülü, MgCl2, şeklindedir. Bu formül, magnezyum klorür bileşiği için en basit formüldür. MgCl2 formülü, bileşikle, magnezyum iyonları ile bu iyonların daima iki katı ka­dar klorür iyonlarının bulunması gerektiğini gösterir.
İyonik bileşiklerde katyon ve anyonların sayıları arasında daima sabit bir oran vardır. Bu oran, iyonik bi­leşiğin miktarına bağlı değildir. Söz gelimi magnezyum klorür bileşiğinde klorür iyonlarının magnezyum iyonla­rına oranı ikidir.
Günlük yaşamda sıkça karşılaştığımız ve kendilerini oluşturan elementlerden çok farklı fiziksel ve kimya­sal özellik taşıyan bazı iyonik bileşikler; yemek tuzu (NaCl), cehennem taşı (AgNO3), çamaşır sodası (Na2CO3), şap [Al2(SO4)3], güherçile (KNO3), göztaşı (CuSO4), demir pası (Fe2O3) ve nışadırdır (NH4CI).
2. Kovalent Bağ
Kimyasal bağların oluşumunda, atomların elektron alıp vermeleri veya karşılıklı elektron ortaklığı kurma­ları gerekliğine işaret etmiştik.
İyonlaşma enerjileri çok yüksek ve elektron ilgileri birbirine çok yakın olan atomların
Kaynak: www.englishpage.blogcu.com

1 YORUM

CEVAP VER
Lütfen yazınızı giriniz.
Lütfen adınızı buraya giriniz.